Critical Point Theorems on Finsler Manifolds
نویسندگان
چکیده
In this paper we consider a dominating Finsler metric on a complete Riemannian manifold. First we prove that the energy integral of the Finsler metric satisfies the Palais-Smale condition, and ask for the number of geodesics with endpoints in two given submanifolds. Using Lusternik-Schnirelman theory of critical points we obtain some multiplicity results for the number of Finsler-geodesics between two submanifolds. MSC 2000: 53C60, 58B20 (primary); 58E05 (secondary)
منابع مشابه
Relative volume comparison theorems in Finsler geometry and their applications
We establish some relative volume comparison theorems for extremal volume forms of Finsler manifolds under suitable curvature bounds. As their applications, we obtain some results on curvature and topology of Finsler manifolds. Our results remove the usual assumption on S-curvature that is needed in the literature.
متن کامل5 Comparison Theorems in Finsler Geometry and Their Applications
We prove Hessian comparison theorems, Laplacian comparison theorems and volume comparison theorems of Finsler manifolds under various curvature conditions. As applications, we derive Mckean type theorems for the first eigenvalue of Finsler manifolds, as well as generalize a result on fundamental group due to Milnor to Finsler manifolds.
متن کاملSome Rigidity Theorems for Finsler Manifolds
This is a survey article on global rigidity theorems for complete Finsler manifolds without boundary.
متن کاملOn Stretch curvature of Finsler manifolds
In this paper, Finsler metrics with relatively non-negative (resp. non-positive), isotropic and constant stretch curvature are studied. In particular, it is showed that every compact Finsler manifold with relatively non-positive (resp. non-negative) stretch curvature is a Landsberg metric. Also, it is proved that every (α,β)-metric of non-zero constant flag curvature and non-zero relatively i...
متن کامل